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ABSTRACT 

This note is to comment upon aspects of the title subject for the case 

where an interatomic potential is defined at only a finite number of im- 

precise data points. Discussion topics include numerical interpolation, 

physical extension of the region of definition, and Richardson extrapola- 

tion of vibrational wavefunction expectation values. 

This paper was prepared as a result of work performed under NASA Contract 
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Two very important aspects of application of the finite-difference 

boundary-value method 111 E21 [31 (FDBVM) to vibrational eigenproblems of 

diatomics 

for which the potential U(R) is defined at only N data points distributed 

over a limited domain 

in a recent paper [4]. These are (a) the effect of using extensions to 

U(R) for regions outside of the domain and (b) the continuous representation 

of ui = U(Ri) 

actual procedures used by TT 

a physical and a numerical point of view. 

R1 5 R 5 % are addressed by Truhlar and Tarara (TT) 

on the domain. We agree as to their importance but find the 

to be subject to critical comment both from 

To obtain a physically meaningful solution of (l), if derived eigen- 

functions are to describe tunnelling into the regions beyond the given domain, 

requires extension of U(R) because in the FDBVM the eigenfunction is-zero 

within h(=Ri+l-Ri) of the extremes of the domain over which U is defined. 

Using the E ,  F 1 potential curve data of Kolos and Wolniewicz (KW) [ S I ,  

TT demonstrated that fitting an extension to U(R) 

has considerable effect on even the lowest energy level, We feel that the 

1 +  

for the region .5 5 R 5 R1 f 1.0 

function chosen by TT to extend U(R) is poorly conceived because it assumes 

an incorrect asymtotic behavior as R -f 0. The true U(R) should go as 

R + g(R) where g(R) is everywhere bounded. Thus Ri should first 

be subtracted from ui and the resulting values should be fitted by use of a 

-1 -1 

bounded functional form such as 

-1 

g(R) = ( 1 akRk) a 0 # 0. 
k=O 



-1 -1 
Then U(R) = R + g(R) for R<R1 and hence U(R) - R - g(R) goes to 

zero as R goes to R1 from the positive side. In addition to the adjusted 

Davidson point [4],[6] (R = .5), one may also make use of the helium 

2 S (ls2s) united atom energy, g(0). We suggest using more of the KW 

points, say up to R = 1.9, and fitting g(Ri) by least-squares, giving 

heavy weight to g(1.0) in order to maintain continuity. It is desirable 

to use the derivative at R = 1.0 

case one cannot count on having derivative values. 

1 

to improve the fitting but for the general 

To obtain a continuous representation for the potential curve, TT 

pi, of an 

follow 

an earlier suggestion [ 7 ] ,  i.e., interpolation of the products, 

analytic function, a ( R ) ,  and the data points, u Such a procedure is 

questionable because numerically the values of the product points must be 

maintained to more significant figures than the  original da ta  po in t s  in order 

that pi/a(R) will restore ui exactly. The implication is that interpo- 

lation of pi must be of higher order accuracy than that of ui. A better 

procedure would be to subtract from the ui an appropriate a(R) which is 

sufficiently close to U(R) sc that the differences, u - a ( R . ) ,  which are to 

be interpolated,would have fewer significant figures than u We suggest 

% is very appropriate. that interpolation of ui - R - g(R) for R1 5 R 5 

i' 

i 1 

i' 
-1 

TT have employed Lagrange interpolation, a procedure which is known to 

fail in certain situations [ 8 ] .  There is quite a large literature now describing 

cubic spline methods [ 8 ] , [ 9 ]  which are fourth order accurate and yield a con- 

tinuous, smoothed interpolant (continuous first and second derivatives). It 

is a considerable oversight not to have mentioned these methods. 

as implied by TT, 

Furthermore, 

interpolation in a strict sense is not appropriate in this 

problem because 

roundoff error. 

the data points are actually inaccurate at least to the tune of 

Hence, it is more correct to use a method which takes any known 

a 
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error in the data points into account. Such a method, based on cubic splines 

is described by Reinsch [lo], [ll] who has given a code which when used does 

not require one to drop data points, a somewhat arbitrary practice. We note 

that relative to the dissociation limit of 0.625 hartree, the data points are 

given to just six figures, thereby imposing a practical mathematical limit on 

the accuracy of derived dissociation energies of vibrational states. 

There also appears to be a severe misconception regarding Richardson 

extrapolation [12], [2] of the expectation values of certain operators. 

Richardson extrapolation is effective only when the coefficients which multiply 

successive powers of h in the approximation to a given quantity are entirely 2 

independent of h. The eigenvalues and expectation values of operators which 

commute with the hamiltonian are such quantities as are the values of the 

eigenfunctions, h-lfv(Ri), at FD grid points. The latter values may be 

extrapolated to higher order only at the common points of successive FD 

approximations to fv(R). To extrapolate h fv(Ri) effectively then, the -1 

different grids employed ought to have many points in common. This implies 

that the best choice for successive grids is to halve the interval length. 

To obtain expectation values to a high order accuracy one may first extra- 

polate f (R ) to the desired level (on the coarsest grid) and then evaluate 

the expectation value integral. 
v i  

Since the function is known only pointwise, 

the FD approximation to it must be regarded as a quadrature formula. Each 

quadrature rule has its own characteristic order of accuracy and so a quadrature 

rule must be chosen which has an accuracy equal to or higher than the accuracy 

of fvIR). 

values is to extrapolate them instead of the h fv(Ri). This cannot be 

accomplished by using quadratures over different grids since then the co- 

efficients which multiply successive powers of 

An alternate and operationally simpler way to improve the expectation 
-1 

h2 in the error term would 
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depend on h. 

formula, keeping the quadrature points fixed. In order to improve the accuracy 

of the expectation values, the quadrature formula can be successively evaluated 

using values of fv(Ri) at the quadrature points obtained from FD computations 

over different grids. Both methods to improve the accuracy of expectation 

values by Richardson extrapolation share two properties. First, the error 

cannot be reduced beyond that of the quadrature formula. 

polation process will be effective only when the successive 

employ a large number of common points. Since TT used grids of 1/50, 1/60, 

and 1/70 (which have relatively few points in common), we infer that they have 

not recognized the limitations of Richardson extrapolation and that their 

results for the expectation value of R are consequently only of order 

h2 accurate. 

The only recourse is to again use a higher order quadrature 

Second, the extra- 

FD calculations 

-2 
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